The 4th PEACE Ocean Science Workshop 17-19 September, 2008, Vladivostok

THE ASSESSMENT OF PREDICTABILITY OF NORTH PACIFIC SEA TEMPERATURE USIN G A CGCM

Joong-Bae Ahn

Atmospheric Sciences Pusan Nation University Busan, S. Korea

Background and Motive

Importance of the North Pacific in regulating extratropical climate on a wide range of time scale

: Numerous studies dating back to Namias (1959) have found that SST and atmospheric circulation over the North Pacific have a strong influence on weather and climate of Northern Hemisphere

Contradictory insistences

- 1. North Pacific SST anomalies have minimal impacts on extratropical circulation.
- 2. North Pacific SSTA responses are very sensitive to the basic flow.
- 3. North Pacific SSTA is largely forced by the atmospheric forcing.

The role of the North Pacific on climate is still an open question.

Air-sea interaction over the North Pacific amplifying midlatitude climate variability.

The physical processes involved in extratropical air-sea interaction let the North Pacific be an important source of climate variability

This consideration provides a motivation for understanding and predicting the North Pacific under the framework of a coupled system.

In this study, the predictability of PNU/CME CGCM is assessed in terms of North Pacific sea surface temperature based on the analysis of 12-month lead hindcasts,

Example of Seasonal Forecast Using CGCM (DEMETER)

DEMETER: Development of European Multimodel Ensemble System for Seasonal to Interannual Prediction

	MPI (Germany)	METO (UK)	CNRM (France)	LODYC (France)	ING (Italy)	ECMWF	CERFACS (France)	
atmosphere component	ECHAM-5	HadAM3	ARPEGE	IFS	ECHAM-4	IFS	ARPEGE	
resolution	T42 19Levels	2.5°x3.75° 19 Levels	T63 31 Levels	T95 40 Levels	T42 19 Levels	T95 40 Levels	T63 31 Levels	
atmosphere initial conditions	coupled run relaxed to observed SSTs	ERA-40	ERA-40	ERA-40	coupled AMIP-type experiment	ERA-40	ERA-40	
reference	Roeeckner 1996	Pope et al. 2000	Deque 2001	Gregory et al.2000	Roeckner 1996	Gregory et al.2000	Deque 2001	
ocean component	MPI-OM1	GloSea OGCM, based on HadCM3	OPA 8.0	OPA 8.2	OPA 8.1	HOPE-E	OPA 8.2	
resolution	2.5°x1.5°-2.5° 23 Levels	1.25°x0.3°- 1.25° 40 Levels	182GPx152GP 31 Levels	2.0°x2.0° 31 Levels	2.0°x 0.5°-1.5° 31 Levels	1,4°x 0.3°-1.4° 29 Levels	2.0°x2.0° 31 Levels	
ocean initial conditions	coupled run relaxed to observed SSTs	ocean analyses forced by ERA- 40	Ocean analyses forced by ERA-40	ocean analyses forced by ERA-40	ocean analyses forced by ERA-40	Ocean analyses forced by ERA-40	ocean analyses forced by ERA-40	
reference	Marsland et al. 2002	Gordon et al. 2000	Madec et al. 1997	Delecluse and Madec 1999	Madec et al. 1998	Wolff et al. 1997	Delecluse and Madec 1999	
ensemble generation	9 different atmospheric conditions from the coupled initialization run(lagged method)	windstress and SST perturbations						

Other Examples of Seasonal Forecast Using CGCM

Model	CENTER (Nation)	AGCM	OGCM	SEA ICE	LSM	Flux Adjust (Coupler)		
PNU/CME CGCM	PNU (S. Korea)	CCM3	MOM3	EVP dynamic sea-ice model	LSM, 1998	No flux adjustment		
POAMA-1	(Australia)	BAM 3.0	ACOM2			(OASIS)		
BCC-CM1	BCC (China)	BCC T63	IAP T63	thermodynamic sea-ice model	NCC/BATS/Su n snow			
NCC CGCM	CMA (China)	NMC/CMA AGCM 1.0	LASG OGCM 1.0	thermodynamic sea-ice model		(DFA, LAF method)		
JMA CGCM	JMA (Japan)	The Barnett et al. type hybrid coupled model	2.5°x0.2°-2°, L20			with flux adjustments and with assimilated ocean I.C.		
CFS03	NCEP/NOAA (U.S.A)	GFS03 ,T62 L64	GFDL MOM3 1/3° ~ 1°, L40			no flux adjustment		
GFDL	GFDL (U.S.A)	AM2.1	MOM4					
UH	UH (U.S.A)	ECHAM4	UH Ocean			without heat flux correction		
NSIPP CGCM V1	NASA (U.S.A)	NSIPP1	Poseidon V4	thermodynamic sea-ice model	Mosaic			
SNU	SNU (S. Korea)	SNU	MOM2.2					

Seasonal Prediction Verification (Temperature)

Courtesy of Korea Meteorology Administration

	Model						20	06f	3					Hit						200	7년						Hit			- 20	008	년			Hit	Hit	Hit
	Model	1	2	3	4	5	6	7	8	9	10	11	12	No.	1	2	3	4	5	6	7	8	9	10	11	12	No.	1	2	3	4	5	6	7	No.	sum	(%)
S P	eriodic Method/ <u>KM</u> A	0	0	×	×	0	0	×	0	×	×	0	×	6/12	×	0	0	×	×	0	×	0	0	0	0	0	8/12	0	×	0	0	×	×	×	3/7	17/31	54.8
A	MLRM/KMA	0	0	×	×	0	0	×	×	×	×	×	×	4/12	0	0	×	0	×	×	×	×	×	×	0	×	4/12	0	×	×	×	0	×	×	2/7	10/31	32,3
s	SNU	0	0	0	0	0	×	×	0	×	×	×	×	6/12	×	0	0	×	×	×	0	0	0	0	x	×	6/12	0	×	0	0	×	0	x	4/7	16/31	51.6
	KNU			0	×	0	0	×	×	×	×	×	×	3/10	×	0	0	×	×	0	0	х	×	0	0		6/11			0	0	0			3/3	12/24	50,0
	GDAPS	×	×	0	х	0	0	×	×	×	0	×	0	5/12	0	×	×	0	×	0	×	×	×	×	0	×	4/12	×	×	0	0	×	×	×	2/7	11/31	35,5
	GCPS/SNU			0	×	0	o	×	×				×	3/7	0	0	×	0	×	0	×	0		\square		×	5/9	0	×	0	0	0	×	×	4/7	12/23	52,2
	PNU	0	0				0	×	0	×	×	0	0	6/9	0	0	0	×	0	0	×	0	0	0	0	×	9/12	х	0	0	0	×	×	×	3/7	18/28	64,3
	PKNU						0	×	×	×	0	×	×	2/7	×	0	×	0	0	0	×	×	×	×	×	×	4/12	0	×	0	0	×	×	×	3/7	9/26	34.6
	CES/NCEP	×	×							0	×	×	0	2/6	0	0	0	×	0	×	×	×	×	×	0	×	5/12	0	х	0	0	×	×	×	3/7	10/25	40.0
	IRI			0	×	0	0		0	×	0	0		7/9			×	0	х	×	0	×				0	3/7	0	х						1/2	11/18	61,1
	IBIE			0	×	0	×	×	×	×	0	0		4/9			×	×	×	×	×	×	0	×	0	0	3/10	х	×						0/2	7/21	33,3
	CWB	×	×	0	0	0	×	×	×	×	0	0	0	6/12	0	0	×	×	0	×	×	0	×	0	0	×	6/12	×	×	0	0	×	×	×	2/7	14/31	45,2
	HMC						0	0	×				0	3/4	0	0	0	×	0	×	0	×	×	×	×		5/11									8/15	53,3
D	JMA	×	×				0	×	×				0	2/6	0	0	0	×	0	×	×	×					4/8									6/14	42,9
I N T	nimr	×	0	×	×	×	0	×	×	×	×	×	0	3/12	0	0	0	×	×	0	×	×	×	×	0	0	6/12	0	×	×	×	0	×	×	2/7	11/31	35,5
A	MGO	×	×	×	×	×	×	0	×	0	×	×	0	3/12	0	0	×	0	×	×	0	×	×	×	0		5/11			0	×	0	×	×	2/5	10/28	35.7
IWL	NCEP	×	×	×	×	×	×	×	×	0	×	×	0	2/12	0	0	0	×	0	0	×	0	0	×	0	×	8/12	×	0	×	0	×	×	×	2/7	12/31	38,7
∣ċ∣⊤	COLA	0	0						\square	0	×	×	0	4/6	0	0	×	×	×	×	×	×	×	×	×	0	3/12	×	0						1/2	8/20	40.0
	NASA	0	×					\square	\square				0	2/3	0	0	×	0	×	0	×	×					4/8									6/11	54,5
	NCC						0		x	×	×	0	×	3/7	×	0	×	0	×	0	×	×	0	×	×	×	4/12	×	×						0/2	7/21	33,3
	MSC	0	0	×	×	O				×	0	x	0	5/9	0	0	×	×	×	×	0	×	0	0	×		5/11						×	0	1/2	11/22	50.0
	POAMA	×	×					\square	\square	×	0	0	0	3/6	×	0	0	0	×	0	×	0					5/8									8/14	57,1
	SCM(1)	×	×	×	×	O	0	×	×	×	0	0	0	5/12	0	0	o	×	0	×	×	0	×	×	0	×	6/12	×	×	0	0	×	×	0	3/7	14/31	45.2
	M MRG(2)	×	×	0	×	0	0	0	×	×	0	0	0	7/12	0	×	×	0	×	×	×	0	×	×	0	0	5/12	0	×	0	0	×	×	×	3/7	15/31	48.4
	M <u>SPM</u> (3)	0	0	×	×	×	0	0	×	×	0	0	0	7/12	0	0	0	×	0	0	×	0	0	×	0	0	9/12	0	×	×	x	×	×	×	1/7	17/31	54.8
	E SSE(4)	×	0	0	×	O	0	×	×	×	0	0	×	6/12	0	0	×	0	×	×	×	0	×	×	0	0	6/12	×	×	×	×	×	×	0	1/7	13/31	41.9
	composite	×	0	0	×	0	×	0	×	×	0	0	0	7/12	0	o	0	×	0	×	×	0	×	×	0	0	7/12	×	×						0/2	14/26	53,8

「World Best 365」 하늘을 친구처럼, 국민을 하늘처럼

Sea Surface Temperature (Model Climate)

Precipitation (Model Climate)

PNU Dynamical Long-term Prediction System

Pattern Correlation of Hindcasts

Verification (Potential Predictability)

Potential Variability (PP): fraction of the total variance that is due to changes in the external forcing

Verification (Skill Scores)

• Hit rate =
$$\frac{A + F + K}{P}$$

• False alarm rate = $\frac{(E+I)+(B+J)+(C+G)}{(P-D)+(P-H)+(P-L)}$
• Heidke Score = $\frac{(A + F + K) - CI}{P - C1}$
• Heidke Score = $\frac{(A + F + K) - CI}{P - C1}$
• C1 = 0.3*(M+O) + 0.4*N

• Brier Score(BS)
$$= \frac{M}{P} \left(\frac{A}{M} - \frac{A}{D} \right)^2 + \frac{N}{P} \left(\frac{F}{N} - \frac{F}{H} \right)^2 + \frac{O}{P} \left(\frac{K}{O} - \frac{K}{L} \right)^2 + \frac{M}{P} \left(\frac{A}{D} - \frac{(A+F+K)}{P} \right)^2 + \frac{N}{P} \left(\frac{F}{H} - \frac{(A+F+K)}{P} \right)^2 + \frac{O}{P} \left(\frac{K}{L} - \frac{(A+F+K)}{P} \right)^2 + \frac{(A+F+K)}{P} \left(1 - \frac{(A+F+K)}{P} \right)^2$$

	Below Normal	Normal	Above Normal
Temperature	SSTA ≤ -σ	$-\sigma < SSTA < +\sigma$	$SSTA \ge +\sigma$

PNU/Climate Prediction Lab

Taylor Diagram of Predicted SST (Lead 2~4)

OCT RUN

JUL RUN

PNU/Climate Prediction Lab

Temporal correlation of 12-month lead SSTA along the equator

Economic Impact Assessment for Deterministic Prediction

			Observation				
		above normal	normal	below normal			
	above	Hit (a)	False Alarm (b)	Miss + False Alarm (c)			
	normal	<mark>Cost</mark>	Cost	Loss + Cost			
Forecast	normal	Miss (d)	Correct rejection (e)	Miss (f)			
(action)		Loss	0	Loss			
	below	Miss + False Alarm (g)	False Alarm (h)	Hit (i)			
	normal	Loss + Cost	Cost	Cost			

• Economic Value, EV $\mathbf{EV} = \frac{E \operatorname{clim} - E \operatorname{fcst}}{E \operatorname{clim} - E \operatorname{perf}}$ *E* fcst : Expected expense of a forecast *E* perf : Expected expense of a perfect forecast

E clim : Expected expense of climatological forecast

EV = 1 : Perfect forecast

EV = 0 : Climatological forecast

•
$$E \operatorname{fcst} = \frac{(a+b+c+g+h+i)C + (c+d+f+g)L}{L}$$

• $E \operatorname{perf} = \frac{C}{L} \overline{o}$
 \overline{o} : relative frequency of cases in which climate
event occurs
• $\overline{o} = \frac{a+i}{a+b+c+d+e+f+g+h+i}$
• $E \operatorname{clim} = \operatorname{Min}\left(\frac{C}{L}, \overline{ocli}\right)$
 $\overline{\operatorname{Ocli}}$: climatological frequency of the event

•
$$\overline{ocli} = \frac{d+e+f}{a+b+c+d+e+f+g+h+i}$$

Economic Values for Seasonal Hindcast (Lead 2~4)

97/98 El Nino Prediction in Different Leads

98/99 La Nina Prediction in Different Leads

EOF Coefficients for Observed and Seasonally Predicted SST

2004 193

Summary

- The predictability of the PNU/CME CGCM is assessed by analyzing 29 cases of 12-month lead hindcasts.
- For the purpose, various skill scores and economic values are estimated in terms of mainly North Pacific sea temperature to access the performance of the CGCM predicting long-term climate.
- The CGCM has a good capability of predicting North Pacific climate 1- to 12-month ahead.
- The high predictability of the model is due to its capability of depicting the prominent modes existing over North Pacific.